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Scaling limits and interacting particle systems

Formally: For a large class of scaling limits of interacting particle
systems, limiting kinetic equations are

(Vlasov equation:)
∂tf + v∇xf + Ff∇vf = 0

Boltzmann equation:
∂tf + v∇xf = QB(f, f)

Landau equation
∂tf + v∇xf = QL(f, f)

Balescu-Lenard equation
∂tf + v∇xf = QBL(f, f)
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A general class of scaling limits

Goal: systematic classification
n ≫ 1 particles (Xi, Vi)

n
i=1 ∈ T3 × R3, ϕ (short-range) potential

Ẋi(t) = Vi(t), V̇i(t) = −
∑
i ̸=j

β∇ϕϵ(Xi −Xj),

where n = N or E[n] = N and α ∈ [0, 1]

ϕϵ(x) = ϵαϕ
(
x
ϵ

)
.

Initial data (canonical or grand-canonical type):

symmetric, translation invariant

chaotic

probability distribution f0(v),
∫
R3

1
2 |v|

2f0(v) = β−1 = 1

For simplicity:

(Xi, Vi) ∼ Z−1e−
∑

i ̸=j βϕϵ(Xi−Xj)
n∏

i=1

f0(Vi).
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Formal limits

For α ∈ [0, 1] and

Ẋi(t) = Vi(t), V̇i(t) = −
∑
i ̸=j

∇ϕϵ(Xi −Xj),

ϕϵ(x) = ϵαϕ
(
x
ϵ

)
,

kinetic limit for one-particle function f(t, v) under scaling

N = ϵ−2(1+α).

The limit equation is given by

α = 0: Boltzmann equation

α ∈ (0, 1): Landau equation α = 1
2 ‘weak-coupling’ limit

α = 1: Balescu-Lenard equation

Systematic approach as [Spohn, Rev. Mod. Phys. 1980] and
[Spohn, Springer, 1991]

Raphael Winter Kinetic scaling limits in plasma physics



State of the art: α = 0 ‘Boltzmann’

∂tf =

∫
R3

dv1

∫
S2

dσ Bϕ(v − v1, σ) { f(v′)f(v′1)− f(v)f(v1)}

Known results 1

for ϕ hard-sphere up to T > 0
for ϕ smooth, short-range up to T > 0

Some open problems

global-in-time problem open

so far no result for ϕ(x) ∼ |x|−s

Related challenge: Derive (linear) Boltzmann-Vlasov equation under
a scaling N = ϵ−2.

V̇i = −
∑
i ̸=j

ϵ−1∇ϕ1((Xi −Xj)/ϵ)−N−1
∑
i ̸=j

∇ϕ2(Xi −Xj).

1[Lanford], [Bodineau, Gallagher, Saint-Raymond, Simonella]
[Saffirio,Pulvirenti] and more
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Derivation of linear Boltzmann for long times

Theorem [Lutsko, Toth, CMP, 2020]

Let Xϵ be flight process of tagged particle in ϵ hard-sphere Lorentz gas,
and

T (ϵ) → ∞, ϵ2T (ϵ)| log(ϵ)|2 = o(1).

Then for any δ > 0 we have

P ( sup
0≤t≤T

|Xϵ(t)− Y (t)| ≥ δ
√
T ) → 0,

where Y is the appropriate Markovian flight process.

New coupling technique that realizes the processes Xϵ, Y together
with a ‘short-sighted’ process Z on a joint probability space.
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Corrections for low but positive volume fraction

Studied extensively by physicists (Uhlenbeck, Cohen, Murphy,
Resibois, ...):
Develop a theory for small but positive ϵ.

Goal: Mathematically rigorous formalism for correction of the
Lanford result:

∥fϵ − f∥ → 0, ∂tf = QB(f, f)

Idea: Find an (explicit) family of operators Qϵ
CU and prove that

∥fϵ − f ϵ∥ ≤ o(ϵ), where ∂tf ϵ = QB(f, f) + ϵQϵ
CU (f ϵ)

Postulates underlying the Boltzmann equation:
1 Collisions are purely binary
2 Collisions are localized in space and time
3 Particles are independent prior to collision

Operators Qϵ
CU need to take into account corrections to these

postulates!
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Theorem [Simonella, W. 2023, preprint]

Let fϵ(t) be the one-particle marginal of the hard-sphere system
with distribution µf1,0 . Let f ϵ be the solution to the kinetic
equation:

∂tf ϵ + v∇f ϵ = QB(f, f) + ϵQCBE(f ϵ, f ϵ, f ϵ)

f ϵ(0, ·) = fϵ(0, ·).

Then for some T > 0 there holds:

lim
ϵ→0

ϵ−1 sup
x∈R3

sup
t∈[0,T ]

∥fϵ(t, x, ·)− f ϵ(t, x, ·)∥L1 = 0.

The Choh-Uhlenbeck operator is given by

QCBE(f) =
∑

Γ(1,2)
σ1,σ2,σ3∈{+,−}

∫
Rσ3

σ1σ2σ3

2∏
i=1

[(ησ3
ki

− vi+1) · ωi]+f
⊗3(ζσ3

1 , ζσ3
2 , ζσ3

3 ).

Raphael Winter Kinetic scaling limits in plasma physics



State of the art: α ∈ (0, 1) ‘Landau’

∂tf(v) = ∇v ·
(∫

R3

B(v, v − v′)(∇f(v)f(v′)−∇f(v′)f(v))dv′
)

B(v, v − v′;∇f) =

∫
R3

(k ⊗ k)|ϕ̂(k)|2δ
(
k · (v − v′)

)
dk

Nonlinear equation from interacting particles: –

From linear models
from a random, mixing force field [Kesten,Papanicolaou 1980],
d ≥ 3
from Lorentz model in d = 2 with short-range potential
[Dürr,Goldstein,Lebowitz, 1987], mixing force field [Komorowski,
Ryzhik, Isr. Jour. Math., 2006]

so far no result for ϕ(x) ∼ ⟨x⟩−s with s small

Well-posedness of classical solutions to PDE:

Recently achieved globally in time for spatially homogeneous
case [Guillen,Silvestre, 2023]

conditional results for spatially inhomogeneous
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Other approaches to Landau limit: Boltzmann-to-Landau

Theorem [Catapano, KRM, 2018]

Consider tagged particle in heat bath, i.e.

W0,N (x0, v0, zN ) = g0(x0, v0)Mβ(v0)MN,β(zN ),

and the Hamiltonian dynamics given by

Ẋi = Vi, V̇i = −α− 1
2

∑
i ̸=j

∇ϕϵ(Xi −Xj).

Then under the scaling

Nϵ2 = α = (log logN)
1
2 , N → ∞.

the density f1,N (t, x0, v0) converges to solution to linear Landau equation

∥f1,N − g(t, x0, v0)Mβ(v0)∥H → 0.
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Boltzmann-to-Landau for singular potentials

Theorem [Le Bihan, W., KRM, 2023]

Let ϕ ∈ C∞
c (B1) be a radially symmetric interaction potential with

ϕ(x) =
f(|x|)
|x|s

for s ≥ 1 and f monotone decreasing. Let gϵ be the solution to

∂tgϵ = δ−1
ϵ Lϵ,

where scaling of Lϵ linearized Boltzmann operator given by

ϕϵ(x) = ϵϕ(x), δ =

{
ϵ−2 s ∈ [0, 1)

ϵ−2| log(ϵ)| s = 1.

Then gϵ ⇀
∗ g ∈ L∞(R+;L2(R6)), where g solves linearized Landau

operator associated to ϕ, s.
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Other approaches to Landau limit: Truncation

From truncated BBGKY hierarchy Close hierarchy at 2nd cumulant,
obtain nonlinear system [Bobylev, Saffirio, Pulvirenti, CMP, 2013]

∂tf
ϵ
1 = ϵ−1∇v1 ·

( ∫
R3

∇ϕ(x∗)gϵ2(x∗, v1, v2)dx∗dv2
)

∂tg
ϵ
2 = −(v1 − v2)∇xg

ϵ
2 + ϵ∇ϕ(x)

(
∇f ϵ

1(v1)f
ϵ
1(v2)− f ϵ

1(v1)∇f ϵ
1(v2)

)
.

Here gϵ2(x1 − x2, v1, v2) approx. of two-particle cumulant.

Question: as ϵ → 0, f ϵ
1 → f solution to nonlinear Landau

consistency at t = 0 (Bobylev, Saffirio, Pulvirenti, CMP, 2013)

for t ∈ [0, T ∗], T ∗ > 0 [Velázquez, W., CMP, 2018], [W., JDE,
2021] using uniform estimates for∫ T∗

0

e−λt(∥f(s, ·)∥2Hn
ω
+Dϵ(f(s)))ds ≤ C,

uniformly in ϵ → 0, and Dϵ → D local-in-time dissipation.
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State of the art: α = 1 ‘Balescu-Lenard’

∂tf(v) = ∇v ·
(∫

R3

B(v, v − v′)(∇f(v)f(v′)−∇f(v′)f(v))dv′
)

B(v, v − v′;∇f) =

∫
R3

(k ⊗ k)|ϕ̂(k)|2

|ϵ(k, k · v)|2
δ
(
k · (v − v′)

)
dk

From interacting particle systems: –

Tagged particle in heat bath [Duerinckx, Saint-Raymond]:
Consistency result on shorter timescale (t = 0).

Theory for the PDE:
ϕ Coulomb [Strain, CPDE, 2006]: well-posedness of linearized
equation with exponential loss of weights:

∥f(t, ·)∥L2 ≤ e−λtp∥f0∥L2
θ
, (1)

where L2
θ is exponentially weighted and p = p(θ). Problem

persists for ϕ(x) = ⟨x⟩−s, s < 3.
ϕ smooth short-rage [Duerinckx, W., ARMA, 2023]: Global
well-posedness close to equilibrium, local away from equilibrium
seemingly unaffected by [Guillen, Silvestre 2023]
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Dependence of the limit equation on ϕ

Equation for the velocity distribution f(v) of a plasma

∂tf(v) = ∇v ·
(∫

R3

B(v, v − v′)(∇f(v)f(v′)−∇f(v′)f(v))dv′
)

B(v, v − v′;∇f) =

∫
R3

(k ⊗ k)|ϕ̂(k)|2

|ϵ(k, k · v)|2
δ
(
k · (v − v′)

)
dk

Landau equation

ϵ(k, k · v) ≡ 1

Used in simulations, mathematical results (Desvillettes, Guo,
Mouhot, Strain, Villani, . . . )

Balescu-Lenard equation

ϵ(k, k · v) = 1 + ϕ̂(k)

∫
R3

k∇f(v∗)

k · (v − v∗)− i0
dv∗
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Well-posedness of the Balescu-Lenard equation

Theorem [Duerinckx, W., 2021]

Let d ≥ 2. Let ϕ ∈ L1 ∩ Ḣ2(Rd) be isotropic and positive definite, and
assume xϕ ∈ L2(Rd). For all s ≥ 2 and 0 < β < ∞, exists CV,β,s large
enough such that: for all initial data F ◦ ∈ L1(Rd) of the form

F ◦ = Mβ +
√

Mβf
◦ ≥ 0, f◦ ∈ Hs(Rd),

satisfying smallness and centering conditions,

∥f◦∥Hs(Rd) ≤ 1
CV,β,s

,

∫
Rd

(
1, v, 1

2 |v|
2
)√

Mβf
◦ = 0,

there exists unique global strong solution F with initial data F ◦

F = Mβ +
√
Mβf ≥ 0, f ∈ L∞(R+;Hs(Rd)),

and it satisfies for all t ≥ 0,

∥f t∥Hs(Rd) ≲V,β,s ∥f◦∥Hs(Rd).
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What about the Coulomb potential?

Microscopic dynamics:
N ≫ 1 particles (Xi, Vi) ∈ R3 × R3, ϕ(x) = |x|−1 Coulomb
potential

Ẋi(t) = Vi(t), V̇i(t) = −
∑
i ̸=j

θiθj
mi

∇ϕ(Xi −Xj).

Effective equation depends on:

temperature

density of particles

charges θi, masses mi

initial data/external fields

Well-posedness issue in attractive case, even N = 3
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Debye screening

Observation: Coulomb pot. ϕ(x) = |x|−1 slow, non-integrable decay.

Question: Effect of single charge has infinite range?

Experiment: Measure effect of single ion on plasma

Particle system before perturbation After perturbation through Ion at the center
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Coulomb gas and screening

Effective interaction decays exponentially over the Debye
length

λD =

√
T

Nθ2

Requires electroneutrality

Either two species with positive/negative charge, or

homogeneous background charge

First mathematically rigorous result (in some regimes)
[Brydges, Federbush, 1980]
; potential connection to [Kesten, Papanicolaou 1980]?.

state-of-the art Coulomb gas theory, see [Serfaty, 2023]

recent results extend to Riesz-gas, see Boursier, Leblé,
Serfaty
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Formal kinetic limit Coulomb

Formal argument

Assuming screening (hom. background) + formal closure of BBGKY
One-particle density can be approximated by

∂tf(v) = ∇v ·
(∫

R3

B(v, v − v′)(∇f(v)f(v′)−∇f(v′)f(v))dv′
)

B(v, v − v′;∇f) =

∫
|k|≤r0

(k ⊗ k)|ϕ̂(k)|2

|ϵ(k, k · v)|2
δ
(
k · (v − v′)

)
dk

where r0 = θ2

mT . Integral divergent for large |k| ≫ 1, more precisely

B ≈ log(ND)BLandau,

where ND is number of particles in Debye sphere.

Raphael Winter Kinetic scaling limits in plasma physics



Debye Screening in Vlasov-Poisson

Theorem [Arroyo-Rabasa, W., 2021/2023]

Let µ ∈ M(R3) be compactly supported measure with finite total variation and

θ =

∫
R3

µ(dx).

Assume f0 radial and Penrose stable. Then there exists weak solution f to

v · ∇xf −∇xQ · ∇vf = 0, lim
|x|→∞

f(x, v) = f0(v)

−∆xQ(x) = (ρ[f ]− 1) + µ ,

satisfying the screening estimates

0 ≤ Q(x) ≤ Cθe
− |x|

λD

|x| , |1− ρ[f ]| ≤ Cθe
− |x|

λD ,

Further, if θ < 0, there are infinitely many such solutions.
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Selected challenges

For conjectures and results on force fields, see [Nota, Simonella,
Velázquez, 2021], [Nota, Velázquez, W., 2022,2023].

Understand equilibrium ensembles for ϕ power law

Derivation of linear Boltzmann/Landau for power law
potentials

Derivation of linear Balescu-Lenard on kinetic scale

Derivation of (linear) Boltzmann in (self-consistent) field

PDE theory for (Coulomb) Balescu-Lenard

Thank you!

Raphael Winter Kinetic scaling limits in plasma physics



Selected challenges

For conjectures and results on force fields, see [Nota, Simonella,
Velázquez, 2021], [Nota, Velázquez, W., 2022,2023].

Understand equilibrium ensembles for ϕ power law

Derivation of linear Boltzmann/Landau for power law
potentials

Derivation of linear Balescu-Lenard on kinetic scale

Derivation of (linear) Boltzmann in (self-consistent) field

PDE theory for (Coulomb) Balescu-Lenard

Thank you!

Raphael Winter Kinetic scaling limits in plasma physics


